
Project Plan
2.1
Project Management/Tracking Procedures

We are adopting a Project Management procedure in alignment with the values of Agile
Development. We will be designing core components/views and receiving feedback / adjusting
in quarters repeated on a timeline of every week or 2 once we meet with the client. We want to
be able to provide a product that Maruf would be happy to use, meaning keeping him posted at
different deadlines and receiving changes to be immediately implemented to result in a
successful end project.

We will be using GitLab issues to track stories, and collaborate via Discord when we
finish, or update a PR to be merged so that way we can keep versioning working at all times. Git
will be our method of version control for our code.

2.2
Task Decomposition

1. Conceptual Analysis
Goal: Establish a fundamental understanding of the problem our project is solving and
the users involved.

a. Requirements analysis
b. User needs analysis
c. View wireframing

2. High-Level Design
Goal: Create the general structure of our solution and decide on how it should roughly
look once complete.

a. Page breakdown
b. Interface designs
c. Backend API definitions
d. Database schemas

3. Low-Level Design
Goal: Decide on the necessary low-level details of our solution to prepare us for the
implementation of the minimum viable product.

a. Frontend library selection
b. Interface component designs
c. Component hierarchy design
d. Backend class diagrams

4. Minimum Implementation
Goal: Implement our solution at the minimum level.

a. Minimum implementation of the frontend (using mock data)

b. Minimum implementation of the backend (on local machine)
c. Basic frontend user testing
d. Basic backend API testing

5. Integration / Initial Prototype
Goal: Connect the frontend and backend and iron out the resultant bugs to create the
initial prototype of our solution.

a. Connection of frontend to backend APIs
b. Deployment of backend to server
c. Integration testing

6. Product Iteration (Continuous)
Goal: Continuously iterate on the solution to achieve all requirements and satisfy the
client.

a. Iterative achievement of all requirements
b. Continuous iteration on new/old functionality
c. Expansion of automatic testing

2.3
Project Proposed Milestones, Metrics, and Evaluation Criteria

● Simple back-end server is able to handle requests locally
○ Simple health check returns status 200

● Back-End server is hosted on our Iowa State Server
○ Server is running in a container
○ CI/CD pipeline handles deployment

● Web Socket connection working
○ User is able to maintain a live connection to the server for messaging

● Core APIs working
○ All APIs required by the project are functioning

● Front-End has working pages with Mock data
○ Designs are created in React and are working with mock data

● Front-End incorporates Back-end APIs and the app is fully working locally
○ Front-End no longer uses mock data
○ Core features working locally

● Front-End and Backend Integrated deployment
○ Both front-end and backend are deployed on our server

● Application can handle a classroom sized load
○ Application is able to work with 200+ people connected

2.4
Project Timeline/Schedule

2.5
Risks And Risk Management/Mitigation

Risk Probability Mitigation

Performance target may not
met when our users exceed
100

75% We can acquire another
server (or multiple servers) to
help balance out the load
when users exceed 100.

Malicious users get into the
course that they don’t belong
in

60% We could store a list of
eligible users (listed by their
student IDs) for each course.
Then when a malicious user
tries to enter/add a course it
will not allow them to add it
unless they are on the eligible
list of users.

Course still says it is “LIVE”
after the class has adjourned
for the day.
In this case the professor
constantly forgets to

30%

adjourn/end the class

Professor continuously
reveals the students name
(after posting anonymously)
to the class while sharing
their screen.

20%

Technical risk: There could be
many more feature requests
once we have our project in
use. We will not be able to
implement all of these
requests in a short amount of
time.

20%

2.6
Personnel Effort Requirements

Task Hours

Database initialization 40

Initial Docker container deployment 100

Web socket routing 50

Express.js initial setup 5

Dockerfile creation 25

REST API creation 250

Frontend page creation 350

Frontend/backend integration 50

Deployment of frontend 100

Load Testing 50

While we believe that our project will take significant amounts of time in many areas, by
far the tasks that will be most time consuming are the creation of the frontend screens and APIs
in the backend. This is because they will require the most logic and actual code/testing, while
much of the other work will be some form of devops or a particular feature, and therefore less
time consuming.

2.7
Other Resource Requirements

The server necessary to run the application on, and some sort of hosting/storage
capability for the app's data once it begins to be hosted via Iowa State and used live in
classrooms on campus.

