
Team 40
Interactive Learning Tool for Large Size
Lectures

Project Statement

There is an issue with communication and effectiveness in a large classroom
setting between the Professor and their students.

Our web based application is an attempt to bridge the gap in
communication by designing a convenient way to interact in a live lecture

amongst a large classroom

Why is this application needed?

● Students aren’t able to talk to professors in large lecture halls

● Students are uncomfortable asking questions in public

● Professors are unable to interact with students effectively

● Professors lose engagement with students

Our Web Application Will:
Allow Students to:

- Answer polls created by the professor
- Message the class anonymously, and access prior lecture chats to gather information

mentioned in the past
- Raise hand, and enter queue to make sure the professor will get back to them
- Direct message professor with questions or concerns

Allow Professor and TA to:

- Create polls
- Take attendance
- Assess performance based on poll data
- Assess participation in class on an individual basis by student
- Address all questions even if they aren’t able to be answered during the lecture period

Users

● Student
○ Shy/Quiet/Tired
○ Overworked/Forgot Something

● TA
○ Nervous
○ Wants to help students learn, but no experience

● Professor
○ Can’t keep up with all students in lecture hall
○ New professor
○ Wants feedback
○ Wants to make lectures more engaging

Project Development Style

● Agile Approach
○ Meet with Faculty Project Lead bi-weekly
○ Obtain feedback, and implement changes discussed
○ Meet as a whole team weekly
○ Meet in our sub-teams weekly

● We utilize GitLab Issues as our means to create stories
● We work in 1 week long sprint increments.

Project Schedule

● Just finished integrating the

frontend/backend

● Finishing all frontend/backend

implementation

● Start load testing

Requirements

Client Specific:

● Intuitive design/use
● Maintainable
● All functionality in one location

○ Without overwhelming user
● Minimalistic look
● Export list of participants
● Dismiss hands raised when

Team Requirements:

● Able to support 500+ users
● Live Messaging
● Ability to create and answer polls
● Raise hand virtually
● Message Anonymously
● Log and store all posts
● Customizable for both aesthetic

and functionality

Design: Frontend - Overview
● React with Webpack

○ Also: Babel, Axios, Redux

● Custom, reusable components
○ Can precisely tailor to requirements

● First iterations in browser
○ Can eventually port to applications

using React Native

Design: Frontend - Page Flow

● Entry point: Login

● Top Bar is always present

● Color key:
○ Green = navigational page/component
○ Purple = minor page
○ Yellow = major page

(restricted pages)

future

Design: Backend-Overview
● ISU VM

○ Ubuntu
● Express Server

○ Easy to use
○ API creation
○ Handles both backend and frontend
○ Easy Websockets

● MySQL Database
○ Docker MySQL Image
○ Lightweight
○ Easy to use
○ Tons of Documentation

● Pm2 library
○ Load balancing

Design: Database

● MySQL DB running
inside of a docker
container

● Storage efficient
design
○ No data stored

multiple times

Design: Deployment Pipeline

● Gitlab Deployment
Pipeline

● Utilizes Gitlab runner
● Deploys both

Frontend and
Backend in single
pipeline

Testing - Overview

● Lightweight testing strategy
○ Non-critical system

● Focus is on APIs
○ Captures core functionality
○ Rigorous testing of frontend rendering is complex and nonproductive

■ Variable view requirements

● When: after minimum viable product

Images: OnlyGFX.com, PDQ.com

Testing - Unit (Level 1)

● Frontend:
○ Commonly-used React components

● Backend:
○ Database
○ APIs

● Tools: Jest, Enzyme, MySQL Workbench, Postman

Testing - Integration & Interface (Level 2)

● Frontend:
○ Page loading/routing
○ Proper component layout
○ WebSocket communication

● Backend:
○ Database-related APIs

● Tools: Jest, Docker, Bash

Server

DB

Client

Testing - System (Level 3)

● Live-lecture messaging
○ Units: front-end consumers, relevant backend APIs, and database queries
○ Integrations: WebSockets, full backend APIs (with database), health check

● Tools: Jest, Docker, Bash

Testing - Acceptance (Level 4)

● Live demos with client
○ Frequent meetings with client
○ Verify functionality and aesthetic

● Live demos with potential users
○ Students, professors, etc.
○ Get requirement-related feedback

Images: Adobe Stock, iStock

Testing - Miscellaneous

● Regression testing
○ Automated unit and (some) integration tests in CI/CD pipeline

■ Hit every API endpoint
○ Health check endpoints

● Security testing
○ HTTPS simplifies this
○ Verify endpoints require session
○ Not able to use Okta
○ Possibly implement OAuth 2.0 later

Images: PNG Mart, Koder.ly, Jing.fm

Conclusion

● Task: To create an easy to use communication tool
● Solution: Web application that uses React native on the frontend, Express on

backend, and MySQL to store information
● Things that could have been done differently

○ More detailed planning
○ Implement some modules earlier - API’s

● Future
○ Adding additional features
○ Testing

Demo Video

https://docs.google.com/file/d/1bC9Z_AiIm2O_07kr_GePBSraPogXkhlY/preview

