

Development Standards & Practices Used
IEEE 1016-2009: Software Design Description
IEEE 1028: Software Review
ISO/IEC/IEEE 26515:2018: Developing information for users in an agile environment
IEEE 9274.1.1- JavaScript Object Notation (JSON) Data Model Format and
Representational State Transfer (RESTful) Web Service for Learner Experience Data
Tracking and Access
IEEE 7002- Standard for Data Privacy Process

Summary of Requirements

● Design a simple, easy to use interactive learning web application for large scale
classrooms.

● Allow professors to post polls, create and participate in discussions during and
outside of lectures, view student engagement statistics and control permissions of
students and TA’s.

● Allow TA’s to participate in discussions, view student engagement statistics and
perhaps have the ability to create polls/discussions according to professor
permissions.

● Allow students to ask questions, participate in polls and engage in discussions
anonymously or by name.

● All discussions and results of polls will be recorded to enable users to go back to
previous posts

Applicable Courses from Iowa State University Curriculum

ENGL 150/250 - Discussions, weekly assignments, large classes

MATH 165/166 - Problem solving questions, weekly assignments, large classes

CHEM 167 - Large class discussions

New Skills/Knowledge acquired that was not taught in courses

● Node development
● Infrastructure
● Express.js
● Docker
● Websockets
● Webpack

Table of Contents

1 Team 5

1.1 TEAM MEMBERS 5

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 5

1.3 SKILL SETS COVERED BY THE TEAM 5

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 5

1.5 INITIAL PROJECT MANAGEMENT ROLES 5

2 Introduction 6

2.1 PROBLEM STATEMENT 6

2.2 INTENDED USERS AND USES 7

2.3 Requirements & Constraints 8

2.4 ENGINEERING STANDARDS 10

3 Project Plan 11

3.1 Project Management/Tracking Procedures 11

3.2 Task Decomposition 11

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 11

3.4 Project Timeline/Schedule 11

3.5 Risks And Risk Management/Mitigation 13

3.6 Personnel Effort Requirements 14

3.7 Other Resource Requirements 15

4 Design 15

4.1 Design Context 15

4.1.1 Broader Context 15

4.1.2 Prior Work/Solutions 16

4.1.3 Technical Complexity 17

4.2 Design Exploration 17

4.2.1 Design Decisions 17

4.2.2 Ideation 18

4.2.3 Decision-Making and Trade-Off 19

4.3 Proposed Design 19

4.3.1 Overview 19

4.3.2 Detailed Design and Visual(s) 19

4.3.2.1 Backend Overview 20

4.3.2.2 Express Application 21

4.3.2.3 Database 22

4.3.2.4 Deployment 22

4.3.2.4 Frontend Overview 23

4.3.2.5 Frontend Design 23

4.3.3 Functionality 25

4.3.4 Areas of Concern and Development 26

4.4 Technology Considerations 26

4.5 Design Analysis 26

5 Testing 27

5.1 Unit Testing 27

5.2 Interface Testing 27

5.3 Integration Testing 28

5.4 System Testing 29

5.5 Regression Testing 29

5.6 Acceptance Testing 30

5.7 Security Testing 30

5.8 Results 30

6 Implementation 31

6.1 Backend 31

6.2 Frontend 31

7 Professional Responsibility 34

7.1 Areas of Responsibility 34

7.2 Project Specific Professional Responsibility Areas 35

7.3 Most Applicable Professional Responsibility Area 37

8 Closing Material 37

8.1 Discussion 37

8.2 Conclusion 37

8.3 References 38

8.4 Appendices 39

8.4.1 Team Contract 39

1 Team

1.1 TEAM MEMBERS

Brandon Burt

Jaden Ciesielski

Adam Walters

Alex Swenson

Tyler Miller

Guan Lin

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Web Development in a React Environment.

UI/UX skills for the frontend design.

Express JS for the backend.

SQL for the database.

1.3 SKILL SETS COVERED BY THE TEAM

Web Development in a React Environment. (All of us)

UI/UX skills for the frontend design. (Adam, Jaden, Brandon)

Express JS for the backend (Tyler, Alex, Guan)

SQL for the database. (Tyler, Alex, Guan)

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Agile Development

1.5 INITIAL PROJECT MANAGEMENT ROLES

Adam - Frontend Lead

Jaden - Frontend Developer

Brandon - Frontend Developer

Tyler - Backend Lead

Guan - Backend Developer

Alex - Backend Developer

2 Introduction

2.1 PROBLEM STATEMENT

There is a long standing problem in large lectures for both students and professors. The
problem is a lack of effective communication and interaction between the students and
the professor. Many if not all of us have been a part of lectures where the professor will
lecture for 50 minutes, and occasionally stop and ask if there are any questions, but for
the most part the professor is met with silence. Another problem is some lecture halls are
so large it is just too hard to hear a conversation between the back of the room and the
front of the room where the professor is. This problem occurs in all large size lecture
halls across campus and most of us are familiar with these kinds of situations. This
problem is important because student professor communication is very important. Not
only does communication allow the professor to know what students are struggling with,
it also allows for meaningful discussions and clarification on important topics. Many
students feel as though they can’t ask questions for fear of being perceived as dumb or
stupid which is why they stay silent. To solve these problems we will be developing an
interactive learning tool to bridge the gap between students and professors. Our
application will have chat rooms for different courses led by a professor. In these chat
rooms the students will be able to DM each other, raise their hand, anonymously ask
questions, and answer in class polls created by the professor. By allowing students to
raise their hand it will give the professor a notification that there is a question which is
much easier than scanning a lecture hall of 300 for a physical hand. To combat the
problem of shy students, the anonymous chat feature will allow students to anonymously
ask questions and allow them to feel more comfortable in the classroom. The polling
feature will allow the professor to engage with the students more and periodically check
if the students are understanding the day's lecture. The chat rooms will be open 24/7 and
students will be able to communicate during class as well as outside of class. This
application aims to bridge the gap in communication for large size classes.

2.2 INTENDED USERS AND USES

Persona 1: StudentA

● Characteristics:
○ Doesn’t feel confident raising their hand in classes with over 25 people

● Personality & emotions:
○ Shy
○ Quiet
○ Tired

● Motivations:
○ Wants questions to be heard in class
○ Wants to participate in class discussions
○ Wants to feel involved

Persona 2: StudentB

● Characteristics:
○ Possibly missed a class (or more)
○ Possibly wasn’t paying attention in class

● Personality & emotions:
○ Busy
○ Overwhelmed

● Motivations:
○ Wants to review what was covered in class
○ Wants to gauge the understanding of other students (based on questions)
○ Wants to get caught up in the class

Persona 3: ProfessorA

● Characteristics:
○ Professor teaching a large classroom
○ Cannot hear people from the back of the classroom

● Personality & emotions:
○ Intelligent
○ Knowledgeable

● Motivations:
○ Wants to have a record of students who participate
○ Wants to encourage every student to ask questions
○ Wants to feel inclusive

Persona 4: ProfessorB

● Characteristics:
○ Professor teaching a large classroom
○ A new professor or new to teaching large classrooms

● Personality & emotions:
○ Intelligent
○ Overwhelmed
○ Nervous

● Motivations:
○ Wants to know how well the students are understanding their lectures
○ Wants to get feedback of their teaching from students
○ Wants to improve their teaching techniques with the use of polls/questions

Persona 5: TA

● Characteristics:
○ Assistant teaching large classes
○ Has little to no assistant teaching experience

● Personality & emotions:
○ Nervous
○ Overwhelmed

● Motivations:
○ Wants to help students that are struggling
○ Wants to know which students need more help/ explanations
○ Wants to feel helpful
○ Wants to take student participation into account when grading

2.3 REQUIREMENTS & CONSTRAINTS

Functional Requirements:
● Have the ability to run on different browsers and OS
● Code should be testable
● Code should be well documented
● Students are able to perform a hand-raise after entering in a brief

question/comment
● Professors are notified whenever a hand-raise occurs during lecture
● Professors are able to clear a hand-raise after it is dealt with
● Students are able to post questions with file attachments under a course
● Professors are able to post polls under a course
● Professors are able to post announcements with attachments under a course
● All users are able to reply to post discussions, if open

● Students are able to respond to polls
● The system displays poll results after a poll closes
● Professors and TAs are able to view detailed poll participation after a poll closes
● Students are able to perform all actions anonymously to other students
● Professors are able to reveal the identity of anonymous students
● All users are able to view every existing post under a course
● Professors and TAs are able to delete posts and replies
● All users are able to view course participation statistics, including the most

frequent posters
● All users are able to change their password

Resource Requirements:
● An internet-accessible server with access to data storage
● Enough server capacity to able to handle up to 500 concurrent users (Iowa State's

largest lecture hall having a capacity of 431) (Constraint)

Aesthetic Requirements:
● Should look like a simple tool to use (complexity is hidden to users unless

enabled)
○ Adequate spacing between posts
○ Only a small number of options to interact with a post

● Options and information should only be visible if contextually applicable and
significant (e.g. posts’ discussions should not be visible when looking at a list of
all posts)

● Minimal, simplistic, clean interfaces

User Experiential Requirements:
● Design should be intuitive and easy for users to use
● Should give the impression of having all functionality in one central location, but

without an overwhelming number of functions
● No downtime/long loading time between posting and seeing the post

○ Meaning quick updates to avoid users wondering if their post posted
correctly

Economic/Market Requirements:
● Our market is comprised of students and educators
● Needs to be a low to zero cost application; free to use and cheap to host
● Should provide a better educational experience in the classroom for our market

Environmental Requirements:
● The application should make for a safer learning environment
● The application will add a layer of privacy to classroom interaction promoting

people to reach out with questions.

UI Requirements:
● UI should have a very simple flow, easy to navigate and understand for all users.
● UI should have a modernized design to improve the overall user experience

2.4 ENGINEERING STANDARDS

IEEE 1016: Software design description
We will use this standard when planning out our project. We will make data driven
decisions to help create the best product. We will create diagrams for our architecture
to help give visuals of our projects setup

IEEE 1028: Software Review
We will perform regular code reviews to ensure the quality of our application. This
standard talks about having personnel, users, customers, and other interested parties
review the code as well as the product to ensure quality which we will do

ISO/IEC/IEEE 26515:2018: Developing information for users in an agile
environment
We will use agile during the development of our application. We chose agile so that
we can work on many tasks of the project in parallel and have constant
communication with our stakeholders allowing us to make changes as needed

IEEE 9274.1.1- JavaScript Object Notation (JSON) Data Model Format and
Representational State Transfer (RESTful) Web Service for Learner Experience Data
Tracking and Access
We will use JSON notation for our communications between frontend and backend.
We chose this because both of our frameworks are JS based which makes interacting
with JSON very easy

IEEE 7002- Standard for Data Privacy Process
We will follow this standard in order to safeguard the answers that students provide.
We chose this because, even though their information isn’t overly sensitive, we still
need to be cautious and safeguard their anonymity as much as possible

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Agile Development, since this is a web development project it makes sense to develop in
sprints and split the workload up into stories.

We are using Gitlab in order to measure issues and progress of our project development.

3.2 TASK DECOMPOSITION

● Create Figma Designs
● Create User Requirements
● Discuss Final Details with Client
● Develop API diagram
● Build Server
● Build UI
● Build API’s
● Connect Front and Back ends together

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● Finish Figma Designs
● Finish API Diagram
● Finish API Development
● Finish Database
● Finish UI
● Finish Connecting all UI components to Backend

3.4 PROJECT TIMELINE/SCHEDULE

Project Timeline
Week 1-4:

● Gave lightning talk
● Created mock designs
● Discussed with client

Week 5:
● Design Document: User Needs
● Initial Design for DB Schema
● Start Page Breakdown

Week 6:
● Design Document: Requirements

● Hello World Express App(Back-End)
● Initial Front-end Design(just visuals)
● Start list of APIs needed for front-end

Week 7:
● Create DB and Schema
● Finish Page Breakdown
● Design Document: Project Plan

Week 8:
● Containerize Hello World App
● Create Component Definitions
● Design Document: Proposed Design

Week 9:
● Create Containerized Deployment for Express Server
● Start work on React app
● Look into store for frontend

Week 10:
● Continue working on Express Deployment
● Continue work on React app

Week 11:
● Build Basic APIs
● Look into Express Web Sockets
● Continue work on React app

Week 12:
● Continue Building Basic APIs
● Have working Web sockets
● Have basic, working frontend application

Week 13:
● Continue Building Basic APIs
● Test connection with backend

Week 14:
● Integrated Front-end/Backend deployment

Week 15:
● Load testing(CPRE 491 class)

Week 16:
● End of Semester Demo
● Fix up any small bugs

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Performance target may not
met when our users exceed
100

75% We can acquire another
server (or multiple servers)
to help balance out the load
when users exceed 100.

Malicious users get into the
course that they don’t
belong in

60% We could store a list of
eligible users (listed by
their student IDs) for each
course. Then when a
malicious user tries to
enter/add a course it will
not allow them to add it
unless they are on the
eligible list of users.

Course still says it is
“LIVE” after the class has
adjourned for the day.
In this case the professor
constantly forgets to
adjourn/end the class

30%

Professor continuously
reveals the students name
(after posting
anonymously) to the class
while sharing their screen.

20%

Technical risk: There could
be many more feature
requests once we have our
project in use. We will not
be able to implement all of
these requests in a short
amount of time.

20%

3.6 PERSONNEL EFFORT REQUIREMENTS

Personnel Effort Requirements

Task Hours

Database initialization 40

Initial Docker container deployment 100

Web socket routing 50

Express.js initial setup 5

Dockerfile creation 25

REST API creation 250

Frontend page creation 350

Frontend/backend integration 50

Deployment of frontend 100

Load Testing 50

While we believe that our project will take significant amounts of time in many
areas, by far the tasks that will be most time consuming are the creation of the frontend
screens and APIs in the backend. This is because they will require the most logic and
actual code/testing, while much of the other work will be some form of devops or a
particular feature, and therefore less time consuming.

3.7 OTHER RESOURCE REQUIREMENTS

The server necessary to run the application on, and some sort of hosting/storage
capability for the app's data once it begins to be hosted via Iowa State and used live in
classrooms on campus.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Our project hits a lot of different areas. The table below describes a few such areas.

Area Description Examples

Public
health, safety,
and welfare

How does your project affect the
general well-being of various
stakeholder groups?

Our project affects stakeholders by
improving the quality of lectures for
students and improving student
interaction for professors. Students are
able to make their voices heard and
professors are able to get more feedback
from students easier.

Our application allows students to
ask questions during lecture and
additionally the student can ask
anonymously which allows all
students to make their voices
heard during lecture allowing for
questions to be answered quickly.
Professors are alerted to new
questions being asked so they can
answer them in a timely manner.
Professors can also create polls
during class to gauge the class's
understanding of material as well
as use the feature for attendance
or other interactive learning
applications. Our chat rooms will
be active 24/7 which will help
students to have access to help

around the clock from their
professor, TAs or other students.

Global,
cultural, and
social

How well does your project reflect the
values, practices, and aims of the
cultural groups it affects?

Many members of the engineering
profession are often quiet introverted
people. These traits can make it hard to
ask questions or communicate in large
lectures. Our application reflects these
traits by helping to create a solution to
the lack of communication

Our application will allow for
anonymous messaging. Since
many students are often nervous
to ask questions during large
lectures, these students still need
to make their voices heard. By
allowing anonymous messaging,
there is no reason for students to
be nervous to speak up or ask a
question they may deem as
“stupid”.

Environment
al

What environmental impact might
your project have?

Our application will require many
devices to connect to our application at a
time which will inadvertently require a
large amount of power especially for
lectures of hundreds of people or more.
This high power consumption could have
a negative environmental effect.

Increasing/decreasing energy
usage from nonrenewable
sources, increasing/decreasing
usage/production of
non-recyclable materials

Our application could increase
energy usage from non-renewable
resources but overall the impact
of our application will be very
little.

Economic What economic impact might your
project have?

Our application could have a large
beneficial financial impact on students

Our application will provide
similar functionality to other apps
like Top-Hat. Top hat currently
requires a paid subscription. Our
application could replace top-hat
which could save students money
from having to buy a
subscription. Students are often
tight on money so anything helps.

4.1.2 Prior Work/Solutions

Since our application is classified as an interactive learning application, there are two
primary comparable applications that ISU Students are very familiar with, Piazza and

Tophat. Both of these applications promote classroom interaction and communication.
Our application will utilize certain positive components that both tophat and piazza have
and also build upon that to create a free and easy to use application for both students and
staff.

Pros:

● Get live direct feedback from students/TA’s/Professors
● Free to use, no third party service
● Ability to ask/respond to questions during/outside class
● 24/7 access to past lecture discussions
● Can gather statistics for professor/TA’s to use for grading purposes

Cons:

● No built in lab/exam feature (tophat.com)
● No interactive textbook (tophat.com)
● No automated attendance/grading (tophat.com)
● No scheduling feature of networking events/interviews (piazza.com)
● No email feature for contacting large companies (piazza.com)
● No connection to canvas for grading (tophat.com)

4.1.3 Technical Complexity
Our project is sufficiently complex because it has both multiple components that

must communicate with each other, and challenging requirements that aren’t currently
met by another solution. Our three main components are the frontend web application,
the backend APIs and websockets, and the MySQL database that stores information for
the APIs. Additional layers of complexity are added by our choice to use a Docker to
deploy our backend application, as well as the fact we must implement both websockets
and REST APIs that cooperate and are in sync with each other when providing
information to the frontend web application. As mentioned previously, Tophat and Piazza
are both somewhat similar to what we hope to build, however neither provides the full
functionality that we are aiming for. Our project is unique in that it will combine the
real-time polling aspect of Top Hat with the forum-like structure of Piazza to create a
solution that we believe will be very valuable.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

● Design Decision: Frontend and Backend Frameworks
The underlying frameworks that the frontend and backend are built on directly
influence many details of the project. The frameworks should be versatile enough

to allow for any current and future functionality that may be required of the
application, but also efficient enough that development will not get blocked or
throttled by the frameworks or by maneuvering them to fit our needs. To
accomplish this, the frameworks should be relatively simple to use, but easily
extensible to add any specific functionality.

● Design Decision: Page Layouts
User experience and look-and-feel are both vitally important aspects of a
successful software product. The user experience should be smooth and intuitive;
no feature should feel obtuse or require training to use. The look-and-feel also
should be comfortable and visually appealing. Incorporating both of these aspects
into the project begins with careful design of the page layouts. The page layouts
define what the user sees, how the user moves through the application, and how
the application’s features are presented.

● Design Decision: API Definitions
In order for the frontend and backend to work together, there needs to be an
agreed-upon set of interfaces the backend provides and the frontend uses. These
interfaces will serve as the only form of communication between the two sides of
the application, so it is important that these interfaces are established early and
before major implementation work begins.

4.2.2 Ideation

For Page Layouts, we considered a number of different options to set this up.

1. We first discussed having the exact same layout for all of our users, just some
users would have options disabled. In this case we are considering the professor
having the same page layout as the student, but the student would not have the
option to reveal the anonymous user's name or see the list of participants in a
discussion.

2. We discussed having a very basic page that only contains basic core functions. In
this case we think the users would be able to navigate through the website with
ease, but we would also lose some functionality if we were to keep only the core
functions.

3. We then considered having separate pages for all users. In this case, the student’s
view would be a completely separate page, filled with separate components, from
the professor and same goes for the TA. This design option, in theory, would be
much more straightforward when only considering one user per page and only
considering the functionalities they would need. The issue with this option is that
we are copying over a lot of the code per page.

4. We considered having a more intricate page layout, which would include the
options to change it to dark mode, rearrange the classes and other functionalities
that will help the user to customize the pages. The issue with this, is that we
would have to add all alternative page layouts for each view and each user. This is
a farther reach for us, and in turn we chose to not consider this for the first
iteration of the MVP.

5. We considered implementing each page layout as a whole instead of breaking it
up into components. This way it would be easy to reuse the page layout and keep
it consistent throughout, but this would also mean a bunch of repeated code which
will lead to bugs later on. This would also make it more difficult to make simple
changes to things that could be considered components (like the top nav bar and
such). So we chose against this option.

4.2.3 Decision-Making and Trade-Off

We ended up choosing option 1. We took into account many different factors, some being
design based, and others over a series of constructive feedback from our project manager
based on our initial evaluations. We went with this option because it ended up being the
most practical choice to meet our specific project needs. This project has a lot of
complexities to it, so we ended up going with a very streamlined design that will get a
well rounded project out in the timeline we have by setting attainable goals to meet the
requirements.

4.3 PROPOSED DESIGN

4.3.1 Overview

So far our team has worked on the critical components of our project such as setting up
the database server and finalized our designs for what our application is going to look
like. We created many diagrams to show the flow of the application such as overall
backend implementations including the database schema, and also page layouts and
functionality between pages. We have also started creating the key components of the
application on the frontend. We have also set up our database using MySql, implemented
a CI/CD pipeline for deployment, and also started creating API’s. Additionally we have
implemented websockets to ensure effective roundtrip communication between the
frontend and backend. We have a live version of the application deployed, and plan to
have messaging working by the end of the semester

4.3.2 Detailed Design and Visual(s)

Below we have the detailed designs for the backend and frontend sides of our application.

4.3.2.1 Backend Overview

Our project's backend is composed of a MySQL database as well as a node server. We are
deploying to one of Iowa State's virtual machines. Our database is running within a
docker container deployed on the server. Our node application is an Express server
running on port 443 and the server uses pm2 for load balancing. Below is a diagram of
our backend:

Figure 1: Backend Block Diagram

From the diagram above you can see how our application is connected within the server.
We store our secrets within the server which includes DB connection information and our
session key. We run our application on a gitlab runner which takes our express server,
places it in a docker container running a node image, and then uses the pm2 library to run
the server. We chose pm2 because it will keep the server live as well as provide us the
ability to restart the server seamlessly which was vital for our deployments. Additionally
we serve the front-end through express by serving the front-end index file when a user
hits the https:/sdmay23-40.ece.iastate.edu route. This allows us to contain the app

completely within express and use the same deployment process for both front-end and
backend

4.3.2.2 Express Application

We use the express.js node library for our backend. Express allows us to quickly
create APIs, but also allows us an easy way to use websockets which are vital to the live
messaging aspect of our application. On startup we load environment variables from our
server for database connection information as well as for session management. After
these variables have been set we have our express app load our API routes and then start
listening on port 443. In order to make our APIs more secure we use sessions. In order
for a user to make a request that involves a database connection, that user will first need
to login. Once the user logs in they will receive a session token, linked to the user's ID
that is valid for 24 hours. Every following request made to our application will go
through session middleware to validate the user's token. If the validation fails the user
will not be able to make requests and will need to log in. The express application is also
able to serve the end-user the front-end through an api route which allows us to contain
the entire project within one application.

4.3.2.3 Database

Figure 2: Database schema

We chose to use a MySQL database for this project. The schema is composed of 8
different tables which facilitate the storage of information about courses, lectures, users,
users’ roles, messages, and polls. A user is linked to a course and assigned a role within
that course using associated entries in the roles table. Each course will have multiple
lectures linked to it using the lectures table. The lectures table has associated messages
and polls linked to a given lecture through the messages and polls tables. A message
contains the message body, timestamp, link to the posting user, and other pertinent
information. Meanwhile, a poll contains similar information, but also is pointed to by the
poll_choices table which stores information about the different options offered in a poll.
The poll_responses table is responsible for storing a user’s selected option(s) by
providing a link between the two tables.

4.3.2.4 Deployment

We have implemented a CI/CD pipeline for our application allowing us to deploy code
very quickly. We utilize Gitlab runners as well as Gitlabs token storage and access token

features. When code is merged to master our pipeline kicks off and first grabs our private
SSH key from gitlab which the pipeline uses to authenticate an SSH connection to our
server. Once that connection has been established our gitlab runner on the server uses an
authentication token to pull the latest changes from our repository. Once the latest
changes have been grabbed, we restart our node server with the latest changes. This
deployment pipeline covers both the frontend and backend, allowing us to only need a
single pipeline and gitlab runner.

Figure 3: Pipeline flowchart

4.3.2.4 Frontend Overview

The project’s frontend is a website built on the React framework, including various
additional libraries (e.g. webpack, Babel) to provide common functionality and
streamline the development process. The website has a persistent topbar to provide
always-available navigation, and the website is organized into multiple pages that each
provide a specific set of features to the user.

4.3.2.5 Frontend Design

The frontend follows the general React design approach and has a single root “app”
which renders the JSX hierarchy for the website, leveraging routers through the React
Router library to facilitate page changes. Pages are the next-level object, containing the
layout for one single browser view. Pages are made up of HTML components,
open-source library components, and custom components.

Figure 4: Frontend Breakdown

The diagram above shows this distinction between pages and components and dialogs the
most important components that the pages will include (small encapsulated
sub-components which will not be used directly by a page are not shown). API
communication will be predominantly handled at the page-level, after which the page
will layout/relayout the view.

4.3.3 Functionality

Our application is meant to be as user friendly as possible. All of the design decisions and
implementations of the application should be hidden from users so that they can just
worry about the intended uses of the application like answering questions.

Our application will start off with a login page with a sign up option so that the user can
be assigned to three different roles: Professor, TA, Student. This will allow professors,
TA’s and students to login to their respective accounts. From there the professors/TA’s
should add the students to a course so then students will be able to join their assigned
courses using some sort of generated code. From there the student should be able to view
current/past discussions, questions and messages from lectures. When students are in a
course they will be able to “raise” their hand, ask questions, answer questions and send
regular messages to participate in the class discussion. There will also be an
“anonymous” feature so that nervous or timid students may be able to ask questions
comfortably.

Professors will have many more features compared to the student. They will be able to
create a course, get a code for the students to join, gather statistics from polls/questions
such as who is the most active when asking/answering questions, send messages, and also
answer questions. The professors should be able to send out a poll during a class lecture
where then students can answer it. They will also be able to view who is anonymous or
not.

The TA’s role will be different in a sense where the professor can assign certain
permissions to the TA’s. The TA’s will start out with the same permissions as the student
but can have almost as many permissions as the professor. The professor will
enable/disable permissions for the TA’s such as allowing them to post polls and other
things.

Our team has created the initial UI of the application which is shown in section 4.3.2.6.
This shows the design of the pages and the functionality between them.

All of the data that is exchanged during all of the interactions will be recorded on a
database where we can gather and pull information from.

4.3.4 Areas of Concern and Development

Our design works well to satisfy both requirements and meet user needs. As far as the
development side of things go, the Backends API / Database design set up will merge
with the needs of the Front End well. We will achieve both the design and functional
needs of the user through our app's features. Our final design also meets all of the
requirements laid out by Maruf, our team advisor.

Some of the primary concerns will be how the system will store data, and delete data, and
work under a larger scale load of a particular size classroom.

We will tackle the issue of latency and load balancing of our application by making sure
nothing is front-loaded, and that everything renders as efficiently as it possibly can by
staying vigilant of this potential problem in the development cycle. The data storage and
deletion will be addressed by working with Maruf in order to figure out the best possible
solution for this issue. Some questions that arise might include how often should data be
deleted, and what level of importance should the data have that is being stored in order to
preserve the most necessary items to minimize cost.

4.4 TECHNOLOGY CONSIDERATIONS

Based on our team's experience and from the previous version of this application we
decided that using Express on the backend would be best suited for this type of project
because it allows us to quickly create API’s and implement websockets which are
essential to our application. Express also allows us to serve our front-end from the server
as well which is a huge bonus. We decided to go with using a MySql database because
we have previously used this and it has many benefits such as data recovery and ease of
use. For the frontend we decided to use React native because of the many benefits such as
allowing developers to create the UI easily and React is much easier to implement than
others such as Angular.

4.5 DESIGN ANALYSIS

So far we have a live build of the application running on Iowa State's servers. Backend
has created a plethora of APIs as well as having reliable websockets working. Front-end
has completed various pages and components for the app. Our proposed design from 4.3
has proved effective and we have been able to make fast progress this semester. Earlier in
the semester we went back and redid our front-end designs based on client and team
member feedback, but overall we are on track for having a prototype completed by the
end of the semester. We had a demo with our client earlier on the live build of the app
showing the front-end, back-end integration via the login page. By the end of the
semester we plan to have the live messaging portion of the application working on the
deployed version of the application.

5 Testing

Our team’s testing strategy is fairly lightweight. The application will not be directly
responsible for calculating and/or recording student grades, nor will the application store
sensitive user data beyond a name and Iowa State email address. The application simply
serves an auxiliary purpose to help improve student-professor communication during
lectures. Because of this, rigorous testing is not necessary for our project. However, it is
still important that basic functionality is verified upon new builds.

Additionally, our testing strategy puts a greater focus on testing the backend APIs over
other parts of the application. Automatic verification of the rendering of a web document
is complex (and the layout is very subject to change), so it is more worthwhile if the
relatively fixed APIs the frontend uses and the backend handles are given the focus of our
testing efforts.

We will begin paying greater attention to testing and the execution of our testing plan
after the completion of a minimum viable product to the satisfaction of our client.

5.1 UNIT TESTING

Frontend: We will be unit testing our most commonly used React components and
pages.

To test the components and their functionality, we will use Jest and Enzyme to create test
cases in order to check that the components are operating as per our requirements. For the
pages, we will utilize a similar method to the components, although we will focus more
on the basic layout than on specific functionality.

Backend: The units we are going to test are the database and APIs.

To test the databases, we are going to be using MySQL workbench, because it is a very
popular open source database management tool for MySQL databases. With this, we can
write queries, execute them, and get the results to test the database.

For APIs, we are going to be using Postman to create our tests and set them up in the CI
pipeline. This will ensure that there is end-to-end functionality of the web application. We
will also need to test the security of the APIs as we will need to secure specific
information going over HTTP.

Tools: Jest, Enzyme, MySQL Workbench, Postman

5.2 INTERFACE TESTING

Frontend: In order to accomplish live messaging and updating during live lectures, the
frontend and backend will be communicating through WebSockets. This is a very critical

interface, as it is the fundamental interface that enables the primary feature of our
application. This interface will be tested through the creation of a mock frontend data
consumer and a mock backend data producer on the same machine, which will then use
our WebSocket infrastructure to communicate and verify successful messages. The
mocking features of Jest can be used to accomplish this, as our frontend and backend are
both written in JavaScript.

We will also be creating a test that will both post a message/discussion to an archived
lecture and then test that we can retrieve that message and it is categorized with the
correct lecture and date. This will be tested using a local server as to not actually store the
test messages in the database. We will be setting up these tests as we establish
connections between the frontend and the backend.

Backend: For our backend, we have essentially two interfaces. The first interface is our
Express application, and our second interface is a MySQL database. Our Express server
communicates with our database for many of our endpoints, so testing is a high priority.
To test this interface, we have created a local script that creates a local database and starts
our Express server locally. The script automatically adds data to our database, and we test
the Express server to database connection by calling our various endpoints. In the future,
we plan to add a stage to our deployment pipeline that will check if our health endpoint
works. The health endpoint will simply check if the Express server and database can
communicate properly. If this test fails, the pipeline will fail.

Tools: Jest, Docker, Bash

5.3 INTEGRATION TESTING

Frontend: The most critical integration path relevant to the frontend is the loading and
routing between various pages. Since we are using React with a single root element, this
isn’t quite as straightforward, and special care will need to be taken to ensure it works
well. Automated testing of this integration would come down to simply loading an
example nested page (i.e. not the root page) and verify that it loaded correctly. In order to
load a page like this, the routing logic would have to run successfully in sync with the
page loading/rendering, so this will work as an integration test.

Besides page loading/routing, proper display of fetched backend data is the other
important integration. Testing the exact rendering of the data in the DOM would be
excessive, but there are other strategies we will leverage to test this integration. For
example, when testing the display for the list of courses, we will test to ensure that the
proper number of courses is being displayed.

Backend: The most important components that will need to have integration tests are the
ability to call the APIs and the APIs’ ability to fetch data from the database and return it
to the calling user. A great example of this would be to add a “Health” endpoint that
ensures it is able to connect to the database, grab some data, perform some sort of simple
calculation on it, and then return a success or failure result. In order to test this, and other
similar but possibly more simple tests (i.e. only testing the integration of the Express app
and the database), our main tool will be Jest.

Tools: Jest, Docker

5.4 SYSTEM TESTING

The root system of our application is the operation of live lectures, and the most essential
system-level interaction that needs to function correctly is the start-to-finish sending and
receiving of messages from users. If that works correctly, then we can have much higher
confidence in our application, as all communication during live lectures takes the form of
a “message,” whether that is a conventional text message or a multiple-choice poll. For
unit testing, testing the frontend message producers, backend message processors, and
frontend message consumers would suffice. Also, for the backend, testing our API
controllers will suffice since these controllers handle all of the logic for our APIs. For
integration testing, testing the successful operation of WebSockets will ensure correctness
for communication. Additionally, the backend will test its integration with the frontend,
server, and database by having a health check on deployments. This check will call a
health endpoint that will return success if the API call succeeds in making a database
connection.

Tools: Jest, Docker, Bash

5.5 REGRESSION TESTING

Frontend: Along with the use of CI/CD and standard agile development methodologies,
the frontend can assure that the app is rendering visually as it should through the use of
snapshots. Enzyme and Jest give us the ability to generate snapshot tests that can
determine if the build is rendered correctly. This, along with the use of CI/CD, covers that
our features being pushed go through without breaking existing functionality.

Backend: We are implementing CI/CD for our web application. Regression testing on
the CI/CD pipeline will be used to make the newer releases of our application more
efficient and consistent, as it verifies the existing functionality. We will make sure that
new features or changes pass all prior unit tests on a development branch before merging
to the master branch, which will be our main application. With this method, we can

ensure that the master branch will always be working and avoid spending lots of time
debugging the application if an error occurs. The main features that should not break as
they are critical to our application are the security of data, such as passwords, and
important APIs, such as login and lecture data getters/setters.

Tools: GitLab CI/CD, Bash

5.6 ACCEPTANCE TESTING

Frontend: We will show our client the functionality of each of the pages, as well as the
aesthetic to ensure it matches with what he had in mind. We will also have potential
student(s) or testers that will try to navigate our application to make sure it is both
intuitive and something that they would enjoy using.

Backend: We will show our client the APIs and validate with him that they are
providing the expected functionality in an acceptable manner.

5.7 SECURITY TESTING

Frontend: As the frontend will be communicating through HTTPS and will not be
responsible for storing sensitive data (minus the session information, which will be stored
in browser storage where it's isolated from other webpages), security testing is not
applicable for this side of the application.

Backend: The backend involves authentication on requests to our server for security.
When the user logs in, they are given a session, and this session is required to make any
future API calls to the server. We test this through middleware we have added to our
server. All requests go through this middleware, and the middleware checks if a user has
a valid session before the user is able to make a request. We have a local startup script
that uses Docker to create a local database, and then our server is also started locally. We
use this local startup to test our APIs and make sure that a user can only make a request if
they have a valid session.

Tools: Docker, Bash

5.8 RESULTS

Currently, we have just exited the design and planning phase and are currently in the
process of developing the core features of our application. As such, we have not
performed/written any tests beyond basic health checks, but as we continue to implement
our application beyond the minimum viable product, we will write tests to ensure
functionality according to the requirements.

6 Implementation

6.1 BACKEND

Backend has made very good progress on implementation so far. We have the entire
infrastructure built out this semester, so we can focus on feature development and testing
for the remainder of this project. For our future implementation we plan to use jest mostly
for testing and we plan to mostly rely on integration testing for the backend so that we
can verify all of our APIs work. For the development aspect we will continue creating
APIs for the front-end to consume by creating new routes within express to retrieve
whatever data the front-end requires. We plan to have a prototype working with basic
functionality by the end of the semester, and plan to have most feature development done
midway through the next semester so that we can focus on final testing and client
acceptance.

6.2 FRONTEND

Frontend has begun implementation of a few of the crucial pages. We have the login page
connected to the backend for approval of login.

Figure 5: Login Page

We have plans to implement the course view page, as seen below in figure 6. We plan to
have this page automatically update when loaded to retrieve the previous lectures as well
as load which lecture is live, if any.

Figure 6: Course View Page

We have also implemented a static live lecture view page, as seen below in figure 7. This
page will soon be connected to all other users on the live lecture feed using websockets.
This way, when any user posts, all other users will have their pages updated to show the
new message or poll. Simultaneously, the backend will be storing these messages in order
for retrieval in the course view page.

Figure 6: Live Lecture View

7 Professional Responsibility

7.1 AREAS OF RESPONSIBILITY

Area of
Responsibility

Definition NSPE Canon IEE Computer Society

Work
Competence

Perform work of
high quality,
integrity,
timeliness, and
professional
competence.

Perform services
only in areas of
their competence;
Avoid deceptive
acts.

Section 3 discusses SE’s should ensure their
products meet the highest professional standards
possible at a reasonable cost. Section 3 differs from
NSPE because cost is not mentioned in the
definition in column 2 and 3

Financial
Responsibility

Deliver products
and services of
realizable value
and at reasonable
costs.

Act for each
employer or client
as faithful agents or
trustees.

Section 3 covers this portion. In section 3.09
discusses engineers giving realistic estimates of
cost. This means engineers should do their best to
charge customers reasonably for the work that they
will provide. This section differs from NSPE
because it also discusses ethical choices related to
work being performed which NSPE does not cover
in column 2 and 3

Communicatio
n Honesty

Report work
truthfully,
without
deception, and
are
understandable to
stakeholders.

Issue public
statements only in
an objective and
truthful manner;
Avoid deceptive
acts

Section 1 covers this portion. Parts 1.01, 1.04, 1.06
best cover this portion since it deals with the
public. To summarize, software engineers should
hold themselves accountable for their work,
disclose any potential dangers to the appropriate
people and avoid deception is all aspects of their
work. This section is very similar to NSPE, but
goes more into detail giving many subsections
instead of a broad overview.

Health, Safety,
Well-Being

Minimize risks to
safety, health,
and well-being of
stakeholders.

Hold paramount the
safety, health, and
welfare of the
public.

Section 1 also covers this portion. To summarize,
software engineers should disclose any dangers to
the appropriate personnel. Software engineers
should also consider disabilities that would prevent
certain people from benefiting from the software.
An example of this would be providing a
colorblind option on a game or website. This

description differs from NPSE in column 2 and 3
because it gives specific use cases and talks about
disabilities which are related to health, but should
be its own section.

Property
Ownership

Respect
property, ideas,
and information
of clients and
others.

Act for each
employer or client
as faithful agents or
trustees.

Section 2 covers this portion. Software engineers
should use only client or employer property in
authorized ways. Software engineers should also
keep confidential information from their client or
employer secret. This differs from NSPE because it
also talks about only using products obtained
ethically whereas NSPE is more dialed into talking
only about acting faithfully to an employer.

Sustainability Protect
environment and
natural resources
locally and
globally.

None Section 1 covers this portion. Software engineers
should only use/write software that is safe, and
does not harm the environment or invade others
privacy. Overall work should be completed for the
greater good. This differs from NSPE which talks
about protecting the environment for future
generations, but does not mention software directly.

Social
Responsibility

Produce products
and services that
benefit society
and communities

Conduct themselves
honorably,
responsibly,
ethically, and
lawfully so as to
enhance the honor
and reputation of
the profession.

Section 8 and 6 covers this portion. Software
engineers should not give unfair treatment based on
prejudices and obey laws governing their work.
This differs from NSPE because these sections also
talk about lifelong improvement in their knowledge
of the different fields of software engineering.

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Area of
Responsibility

Applicability Current Level of Performance

Work
Competence

Work competence is very applicable.
We want to ensure that we are
competent in the skills required to
build this application and therefore

Medium
We are doing a lot of good work, but there are some
areas we are lacking. For example the course view
design was just 4 rectangles. We decided on medium

produce a quality result. because there is much more good work being done than
bad work, but since there is still some work that is
lacking we can improve.

Financial
Responsibility

Financial responsibility is not very
applicable. All of the resources we
are using are either open-source or
already provided by the university,
meaning there are no/little costs
involved in this project.

High
We have not needed to use funds for this project which
puts us at a high rating. We are using open source
software and university resources, allowing us to keep
our costs low. We are giving our client reasonable
estimates and keeping costs low.

Communicatio
n Honesty

This area is extremely important and
applicable to our project. Honest and
candid communication between team
members, as well as with outside
entities, is important to avoid
miscommunications and maintain
common understandings.

Medium
It is good that we communicate at our meetings every
week, but it can be hard to contact certain individuals
within the team. We have also had a few meetings that
were not effective and took far longer than they should
have.

Health, Safety,
Well-Being

Health, safety, and well-being is not
very relevant to our project. There
are no true safety or well-being
implications included in our
applications.

High
We have done a good job identifying potential risks
within our application. We added security measures to
prevent unauthorized requests to our backend server,
and the front-end team also has implemented a login
process. We have done a good job identifying and
implementing security measures which will minimize
risks to our stakeholders.

Property
Ownership

This category of responsibility is
important to our project, especially as
it pertains to user information
security. We must ensure that users
are only able to access their own
information, or that of their students
if they are a professor or TA for a
given course.

High
We meet with our client often and discuss our
progression even though our client is a bit hands off.
We have been transparent about the software we will be
using and we are acting faithfully by adhering to our
clients needs.

Sustainability Sustainability is not applicable to our
project as there are no implications
related to the environment or natural

High
Our application has a low environmental impact to
begin with, so we are doing well in this aspect. For the

resources outside of the negligible
amount of electricity required to run
the users’ clients and the server.

little confidential information we will store we provide
appropriate security. I gave us a high rating since our
application is very sustainable since it only uses ISU
resources.

Social
Responsibility

This is an important area for our
project. We are trying to help
students have a more productive
learning environment, and therefore
benefit the academic community.

Medium
I think most members have been taking responsibility
for their work, but some have struggled. I think we can
improve by everyone taking some time to improve their
knowledge of the tools and software we will be using.
Since I think we can improve a fair bit in these areas I
gave us a Medium.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Social responsibility is the most important area of responsibility. This is because we need
to ensure that our application is giving an appropriate level of privacy to the users of our
system. Examples of this are situations such as not allowing student users to see their
peers’ individually identifiable poll responses, or TAs and professors only being allowed
to have elevated permissions to see users’ information for the correct courses.

8 Closing Material

8.1 DISCUSSION

Our team has worked on many of the critical components of the product such as having a
fully responsive, working frontend and backend. Our team has worked on many things in
order to achieve this goal, the main ones being setting up the server and implementing
APIs and websockets to create easy communication between the users and the server or
database, and the setting up of a React design on the frontend containing many pages and
components. With this, our team has met many of the requirements that were established
in the planning stages of the project and can verify that almost all of the requirements of
the product are met with great precision. Since we are still in the development phase and
don’t have the complete application ready, the main critical components of the web
application work and are ready for demonstration.

8.2 CONCLUSION

As it stands currently, in a large lecture hall that consists of up to perhaps five-hundred
students, it is hard for the professor to communicate with the students. Such as it can be

difficult for the professor to hear or answer all of the questions that may be raised during
discussions. To solve these types of problems, we proposed the best plan of action was to
develop an interactive learning tool to bridge the gap between students and professors.
Our application has chat rooms for different courses or lectures led by a professor. In
these chat rooms the students will be able to message each other, raise their hand,
anonymously ask questions, and answer in class polls created by the professor. These
types of features on our web application help create easy communication between
students and professors in large size classes.

Looking back throughout this semester we believe that there were some things that could
have been improved. One improvement we could have made was to implement some core
components earlier such as API’s. We believe that if we could have developed the main
API’s earlier then the team would have a lot more time to focus on other critical
components. The main correction we could have made was to plan much more diligently.
Our schedule was really only planned out for this semester and we kind of shrugged off
next semester and gave large overarching tasks such as testing for three months. We feel
that if we planned out thoroughly for both semesters it would allow us to see which
dependencies perhaps could be completed a lot earlier, thus giving the team much more
slack.

As we transition from a successful design phase to finishing implementation, we are
hopeful that the professors, TA’s and students will find the application useful for large
classrooms and enhance the way they teach and learn.

8.3 REFERENCES

IEEE 1016: Software design description
We will use this standard when planning out our project. We will make data driven
decisions to help create the best product. We will create diagrams for our architecture
to help give visuals of our projects setup

IEEE 1028: Software Review
We will perform regular code reviews to ensure the quality of our application. This
standard talks about having personnel, users, customers, and other interested parties
review the code as well as the product to ensure quality which we will do

ISO/IEC/IEEE 26515:2018: Developing information for users in an agile
environment

We will use agile during the development of our application. We chose agile so that
we can work on many tasks of the project in parallel and have constant
communication with our stakeholders allowing us to make changes as needed
IEEE 9274.1.1- JavaScript Object Notation (JSON) Data Model Format and
Representational State Transfer (RESTful) Web Service for Learner Experience Data
Tracking and Access
We will use JSON notation for our communications between frontend and backend.
We chose this because both of our frameworks are JS based which makes interacting
with JSON very easy

IEEE 7002- Standard for Data Privacy Process
We will follow this standard in order to safeguard the answers that students provide.
We chose this because, even though their information isn’t overly sensitive, we still
need to be cautious and safeguard their anonymity as much as possible

8.4 APPENDICES

N/A

8.4.1 Team Contract

Team Members:

Brandon Burt

Jaden Ciesielski

Adam Walters

Alex Swenson

Tyler Miller

Guan Lin

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

Thursdays: 5:45 - 6:45 pm (Group Meeting)
Backup-Time: Sunday 6 - 7pm

Additional Front-end and Backend Meeting to be scheduled weekly once roles are
assigned

2. Preferred method of communication updates, reminders, issues, and scheduling
(e.g., e-mail, phone, app, face-to-face):

Discord, Snapchat, gitlab issues, email

*Tag on discord

3. Decision-making policy (e.g., consensus, majority vote):

Consensus

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will
minutes be shared/archived):

Shared drive folder with a document for each meeting
minutes will be on the document and we will follow our advisors template

Note Taker: Rotation
Member Minutes will be on the advisors template and we will enter minutes at the
end of each meeting

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team
meetings:

80% +

2. Expected level of responsibility for fulfilling team assignments, timelines, and
deadlines:

Each group member will be responsible for the work assigned to them. If the
member requires help they will let the group know as soon as possible.
Communicate often and keep all members relevant to your tasks in the loop.
Don’t wait to be told to complete a task.

3. Expected level of communication with other team members:

Keep the group informed of the work you are doing either via discord or through
our weekly team meetings. Communicate often so that we don’t get out of sync
on the project. At the minimum weekly updates at the front-end/back-end
meetings as well as the group meeting

4. Expected level of commitment to team decisions and tasks:

Be committed to the choice the group has made, even if you don’t fully agree. Put
in your best effort. Expected 6 hours of work per week as per our advisors
standards

Leadership

1. Leadership roles for each team member (e.g., team organization, client
interaction, individual component design, testing, etc.):

Backend: Tyler, Alex, Guan
Frontend: Jaden, Adam, Brandon

Frontend Manager: Adam
Backend Manager: Tyler

Meeting Coordinator: Jaden

*Roles may change based on project needs

2. Strategies for supporting and guiding the work of all team members:

Create Gitlab issues for stories
Follow advisor template with contributions and plan work the following week
Work towards milestones
Get refined goals and timelines from advisor at (bi)weekly meetings

3. Strategies for recognizing the contributions of all team members:

Fill out advisor template with contribution minutes and create a gitlab issue for
any code related changes

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings
to the team.

Tyler: Extensive Node API development with AWS Lambda and Express.js. 1.5
years experience with React.js and half a year of experience with Vue across 2
companies in Industry

● React
● Vue
● Node.js/Typescript
● Express
● AWS
● Python
● MySQL and Postgres
● Containers
● Agile
● Jest, Vitest, Cypress
● Jenkins

Jaden: Have 2+ years of experience in agile app development communicating
directly with the RF engineer clients, using REST APIs and maintaining servers.
Competencies:

● Python
● React
● Node.js
● Javascript/Typescript

● Java
● AWS
● Linux/UNIX

Adam: Have 5+ years of experience developing video games, requiring
knowledge of
UI/UX, using extensive APIs, exploit protection, and of course programming a
large networked project. Competencies:

● C/C++
● Java
● HTML/CSS
● JavaScript/TypeScript
● Node.js
● AWS
● UNIX

Guan: Have 1+ years of mobile application development on the frontend, and
automated unit and integration testing.

● Python
● Java
● C#
● C/C++
● Javascript
● HTML/CSS
● SQL
● Agile

Alex: Have 2 years of experience as a full stack developer working with Node.js,
React.js, various types of databases and many different other languages and
frameworks. Experienced in coordinating with multiple teams across the
enterprise.

● React
● Node.js
● Express
● AWS
● Python
● MySQL and Postgres
● Containers
● Agile

● Jest
● Jenkins

Brandon: Have experiences in Web Development, App Development, and IT
primarily. Worked with various modern web technologies, all 3 major
frameworks, (React, Angular, Vue JS). Software Testing experience using React
Testing Library, Jest, and Enzyme. Primarily Frontend Experience. Worked for
Cerner Corporation, Union Pacific Railroad, ISU, United States Department of
Agriculture, and more recently Collins Aerospace under Raytheon Technologies.

● React, Vue JS
● HTML
● Javascript (Vanilla, ES5, ES6)
● CSS
● Agile Development
● Jest/Enzyme
● SQL

2. Strategies for encouraging and supporting contributions and ideas from all team
members:

Make sure every team member contributes at least one idea per meeting. Be open
to all team members' ideas. All members will help in the creation of stories at
development time

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g.,
how will a team member inform the team that the team environment is obstructing
their opportunity or ability to contribute?)

Communicate early if there is a problem, and don’t be afraid to speak up. Bring
up any issues at our weekly team meetings.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

Create a shell for the eventual application and have a well formed development
plan for next semester. Create A level work

2. Strategies for planning and assigning individual and team work:

At our weekly meetings, divide work out and have each member in charge of a
task or tasks. We will create stories at development time and during the planning phase
we will keep a list of tasks to complete as they arise and assign tasks each week. Team
work will be completed during team meetings

3. Strategies for keeping on task:

Keep a timeline for the project to give us an idea if we are ahead of schedule or
behind so that we can plan accordingly. Manage time well and complete a reasonable
amount of work each week. Make sure tasks are well defined so that members don’t need
to spend a lot of time finding requirements

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

Initially confront the individual privately and determine if the infraction needs to
be brought up at a team meeting. If the issue cannot be handled at the team meeting then
escalate to our TA/Professor and Advisor if needed

2. What will your team do if the infractions continue?

Bring up the issue with our TA/Professor and Advisor

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) _________________Tyler Miller______________________ DATE ____12/1/22________
2) _________________Brandon Burt_____________________ DATE ____12/1/22________
3) _________________Alex Swenson____________________ DATE ____12/1/22________
4) ________________Adam Walters_____________________ DATE ____12/1/22________
5) _________________Guan Lin ________________________ DATE ____12/1/22_______

6) ___________________Jaden Ciesielski_________________ DATE _____12/1/22_______

